博客
关于我
牛牛和牛可乐的赌约
阅读量:119 次
发布时间:2019-02-27

本文共 1145 字,大约阅读时间需要 3 分钟。

为了解决这个问题,我们需要计算牛牛投掷骰子时输的概率。牛牛投掷m次n面的骰子,每次投掷都必须出现n点,才能赢。输的概率是至少有一次投掷不是n点。我们可以通过快速幂和模逆元来高效地计算这个概率。

方法思路

  • 问题分析:输的概率是1减去赢的概率。赢的概率是每次投掷都成功的概率,即(1/n)^m。因此,输的概率为1 - (1/n)^m。
  • 快速幂计算:使用快速幂算法来计算大数的幂取模。
  • 模逆元计算:使用费马小定理来计算模逆元,因为1e9+7是一个质数。
  • 计算步骤
    • 计算n的逆元。
    • 计算逆元的m次幂。
    • 计算输的概率,并调整负数情况。
  • 解决代码

    #include 
    using namespace std;typedef long long ll;const int MOD = 1e9 + 7;ll poww(ll a, ll b, int mod) { ll ans = 1; ll base = a; while (b) { if (b & 1) ans = (ans * base) % mod; base = (base * base) % mod; b >>= 1; } return ans;}ll inv(ll a, int mod) { return poww(a, mod - 2, mod);}int main() { ll t; read(t); for (int _ = 0; _ < t; ++_) { ll n, m; n = read(); m = read(); if (n == 1) { cout << 0 << endl; continue; } ll inv_n = inv(n, MOD); ll inv_pow = poww(inv_n, m, MOD); ll res = (1 - inv_pow + MOD) % MOD; cout << res << endl; }}

    代码解释

  • 快速幂函数poww用于快速计算大数的幂取模,适用于处理大指数问题。
  • 模逆元函数inv使用费马小定理计算模逆元,适用于质数模数。
  • 主函数:读取输入数据,处理每个测试用例,计算逆元和幂,最后输出结果。
  • 特殊情况处理:当n=1时,直接输出0,因为每次投掷都只能得到1点,无法输。
  • 通过这种方法,我们可以高效地计算牛牛输的概率,并在大数情况下快速得到结果。

    转载地址:http://ywzb.baihongyu.com/

    你可能感兴趣的文章
    nginx+Tomcat性能监控
    查看>>
    nginx+uwsgi+django
    查看>>
    Nginx-http-flv-module流媒体服务器搭建+模拟推流+flv.js在前端html和Vue中播放HTTP-FLV视频流
    查看>>
    nginx-vts + prometheus 监控nginx
    查看>>
    Nginx下配置codeigniter框架方法
    查看>>
    Nginx之二:nginx.conf简单配置(参数详解)
    查看>>
    Nginx代理websocket配置(解决websocket异常断开连接tcp连接不断问题)
    查看>>
    Nginx代理初探
    查看>>
    nginx代理地图服务--离线部署地图服务(地图数据篇.4)
    查看>>
    Nginx代理外网映射
    查看>>
    Nginx代理模式下 log-format 获取客户端真实IP
    查看>>
    Nginx代理解决跨域问题(导致图片只能预览不能下载)
    查看>>
    Nginx代理静态资源(gis瓦片图片)实现非固定ip的url适配网络环境映射ip下的资源请求解决方案
    查看>>
    Nginx代理静态资源(gis瓦片图片)实现非固定ip的url适配网络环境映射ip下的资源请求解决方案
    查看>>
    nginx反向代理
    查看>>
    nginx反向代理、文件批量改名及统计ip访问量等精髓总结
    查看>>
    Nginx反向代理与正向代理配置
    查看>>
    Nginx反向代理及负载均衡实现过程部署
    查看>>
    Nginx反向代理是什么意思?如何配置Nginx反向代理?
    查看>>
    nginx反向代理解决跨域问题,使本地调试更方便
    查看>>